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The introduction to rolling friction is studied in relation to the height that a ball attains rolling ip
an inclined track after rolling down a given height along another inclined track opposite from the
first. The expressions obtained for a ball rolling down a rectangular inclined track and along a
horizontal track are applied to the study of the distance run along two opposed inclined tracks.
Different procedures are proposed to determine the coefficient of rolling friction of the ball with
the track. The values calculated from the experimental data suggest their dependence with the

ball radius.

I. INTRODUCTION

In introductory mechanics courses, a usual problem is
the prediction of the height 4 that a sphere or cylinder will
attain on an inclined track after rolling down—from initial
height A,—a second inclined track opposite the former.

This problem is a direct example of the energy conserva-
tion principle in the ideal case of a cylinder or sphere that
rolls without rolling friction.

A simple experiment is depicted in Fig. 1 in which a ball
rolls down a track of rectangular cross section along two
opposite slanted planes. The heights reached by the sphere
or cylinder in a second track are always lower than the
initial. Experimental results clearly are in conflict with
theoretical prediction in an ideal case (A = A,).

This experiment can be used as a didactic method within
the context of “guided discovery.” A research procedure
can be proposed to students following these steps: (a)
elaboration of the formal model of rolling friction, (b) ap-
plication to the different situations, (¢) design of adequate
experiments and treatment of data, (d) calculation of the
coefficient of rolling friction and comparison of the values
obtained by the different methods, and (e) study of the
factors influencing these coefficients.

Rolling friction is not frequently included in general
physics textbooks. However, a more realistic description of
rolling motion requires inclusion of this subject. The exam-
ple discussed above and deceleration of a sphere rolling on
a horizontal track, needs to include rolling friction.

II. THEORY

The classic treatment of rolling friction is due to Reyn-
olds' (1876), Hertz? (1886), and Heatcote® (1921). Re-
cent practical applications can be found in engineering me-
chanics.**

Rolling friction appears as a torque opposed to spheres’
or cylinder’s rotation:

szpN,

where N is the normal force exerted by the plane on the
sphere and p is the coefficient of rolling friction. To a first
approximation, p can be considered dependent on the na-
ture and state of the surfaces in contact, but not on the
radius or velocity of the sphere, that are also cited as influ-
encing factors.

This frictional torque can be justified if we assume a
small depression in the contacting surfaces, so that the re-
action force of the plane (see Fig. 2) is applied to the sphere
at a point slightly in front of the ideal geometric point of
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contact. Then p represents the arm of the pair of forces
applied on the sphere perpendicular to the sustaining
plane. p has dimensions of length and its value must be very
small in relation to the sphere’s radius.

Papers of Hertz and Bentall and Johnson® relate surface
depression to elastic properties of sphere and plane materi-
als. Theoretical treatment of rolling friction by these auth-
ors predicts, as suggested by Fig. 2, the dependence of p
with sphere radius and effective load on the contact point.
Values of p cited in literature are in the range’ 10~2-10—3
cm, however nonaccordance exist between different auth-
ors®; dependence with previously mentioned factors is also
neglected. Development of an experimental method of
measurement of this coefficient can be interesting for engi-
neering studies.

A. Rolling down an inclined track

In recent papers, Shaw and Wunderlich® and Chaplin
and Miller ' study the rolling ball and also the combina-
tion of rolling and slipping when the ball rolls down and
inclined track. Including rolling friction, dynamic equa-
tions that describe the movement of a rolling ball down a
track inclined @ degrees with respect to the horizontal
plane will be

ma=mgsin @ — F,,

Ia =R F,— Ty,
where a is the acceleration of the ball’s mass center, a the
angular acceleration, m is the ball’s mass, and 7
( =2mR %/5) the moment of inertia with respect to the
diameter. F is the friction force, necessary for rolling, that

if applied to the instantaneous rotation axis will not pro-
duce work and therefore does not dissipate mechanical en-

Fig. 1. The ball rolls from a height 4, on the first plane to a height 4 < Ay on
the second, covering distances ¢, and e, respectively.
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Fig. 2. Shows the pair of forces that determines the friction torque T; the
normal N reaction of the plane on the ball and the normal component of
the weight. The coefficient of the rolling friction is the arm of the pair of
forces.

ergy. This requires that the deformation of the contacting
surfaces must be very small. ,

A schematic diagram of the ball placed on a track is
shown in Fig. 3; R, is the ball’s radius and R, is the effec-
tive radius that depends on the former and on the track’s
width.

If we consider the case of rolling @ =aR, and that
N =mg(R,/R,)cos 6, we obtain the following expression:

o= (sin 60— (p/R,)(R,/R,)cos 9)
B 1+ (2/5)(R,/R.)? '

On the other hand, the ball would start rolling down the
track at the limiting inclination angle & whose tangent is
given by

tan 6 = (p*/R,)(R,/R,) . (2)

However in this case p* would represent the coefficient
of static rolling friction: a distinction similar to that used
with the coefficients of slipping friction.

The total torque has two components: 7, =pN and
T, = R_Fy; their ratio can easily be obtained:

T, 1+ (2/5)(R,/R,)*
T, 1+ (2/5)(R,/p)tan8

When the plane inclination argle becomes larger than a
given limit value (6; ), rolling and slipping exist simulta-
neously; then ¢#aR, and the friction force attains the
limiting value'': F, = pumg(R,/R,)cos 6, where p is the
dynamic coefficient of slipping friction. Acceleration of the
ball’s mass center is @ = g[sin  — u(R,/R,)cos 6 | and
the relation T;/T, is given by

r_pN __p 4)
T, RuN R

and the angle of transition from rolling to rolling and slip-
ping is

(D

()

g1+ (2/5)(R,/R,)*] — p/R,
(2/5)(R,/R,) '

Conditions for ball’s rolling, rolling and slipping, and
only slipping are summarized in Table I.

()

tan §; =

Fig. 3. The effective radius R, of the ball corresponds to the distance
between its mass center and the instantaneous rotation axis (dotted line).
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Table 1. Conditions for ball’s rolling, rolling and slipping, and only slip-
ping.

Repose tan 6 < (p*/R,)(R,/R,) and u*(R,/R,)
Rolling (p*/R,)(R,/R,) <tan 6 <u*(R,/R,)
Slipping and

rolling tan 6> (p*/R,)(R,/R,) and u*(R,/R,)
Slipping H¥(R,/R,) <tan < (p*/R,)(R,/R,)

(u*: static coefficient of slipping friction).
(p*: static coefficient of rolling friction).

B. Rolling along a horizontal plane

~ If we consider the case of a ball that rolls along a horizon-
tal track, a constant deceleration will exist due to rolling
friction if we assume, as we have implicitly done until now,
that the rail and the ball are homogeneous, that the width
track is constant, that the ball is a perfect sphere and that
the coefficient of friction is also constant.

We can deduce the deceleration from the following equa-
tions:

ma=F,,
In=T;—R,F,,
(see Fig. 3).

Asa =aR, and now N = mg(R,/R,), we can propose
that the acceleration of the ball’s mass center is

. _g( (p/R.)(R,/R,) )
1+ (2/5)(R,/R.)?)’
and relation T,/T, is 1 + (2/5)(R,/R,)*.

(6)

C. Rolling between two inclined planes

If we let a ball roll down a slanted plane with no slipping
from a height 4, it will run a distance e, on the plane

(em.s™2)
o
°

a/cosH

30

20

-20

[} 0.02 0.04 0.06
tan 4

Fig. 4. Dependence of the acceleration with the inclination angle; steel
balls, wood track. Diameters: A: 2.500 cm, B: 1.510 cm, C: 1.360 cm, D:
1.125 cm.
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Table IL. Coefficients of rolling friction calculated from inclined track (i), horizontal track (ii), and double track (iii) methods. Column (iv) shows

static values calculated from minimum rolling angles.

Ball Diameter (cm) p(cm) X 10°
Aluminum track (i) (ii) (iii) (iv)

Steel 1.125 1.44+05 1.0+ 04 20404 22+04
Steel 1.270 1.8+ 0.6 1.1+04 2.8+0.5 3.0+05
Steel 1.360 194+ 0.6 1.2+04 3.0+05 3.740.6
Steel 1.510 3.1+08 1.3+ 04 38406 45+ 056
Steel 2.000 3.64+09 20+0.5 4.8 +0.6 6.54+0.8
Steel 2.500 48+ 1.1 24406 504 0.6 74409
Alum. 2.500 64+15 32+08 74408 9.8+ 1.1
Brass 2.500 32408 22405 594+0.7 82+1.0
Wood track

Steel 1.125 39+1.2 35+ 11 5.3+ 1.4 6.1+0.9
Steel 1.270 42412 38+ 1.1 57+ 15 70+ 1.0
Steel 1.360 46+ 1.3 42412 6.1+1.5 73+ 1.0
Steel 1.510 47413 584 1.6 6.6+ 1.6 7.7+ 10
Steel 2.000 5.5+ 14 6.1+ 1.6 6.8+ 1.6 9.7+ 1.2
Steel 2.500 6.0+ 1.4 78+ 1.8 73+ 1.7 10,6+ 1.2
Alum. 2.500 42406 17 +3 6.5+ 1.6 155+ 1.8
Brass 2.500 6.5+ 1.5 80+ 1.8 7.5+ 1.7 10.6 + 1.2

(ho = e, sin 6,) reaching the plane’s base with a velocity v
given by equation:
. [deo( sin 6, — (p/R,)(R,/R, )2cos 00)] ‘/2. o
14+ (2/5)(R,/R,)
The frictional work exerted in the fall along the first

track can be obtained as W,, = mgh, — mv*/2 — Inw*/2
(where v = @R, ), resulting in

W, = mge,(p/R.)(R,/R,)cos 6, . (8)
For slipping motion, frictional work is given by
W =umgey(R, /R, )cos 6, . 9)

An analogous treatment explained in Sec. IT A allows us
to conclude that the ball will go up the second track with a
constant deceleration given by

_ (sin 0 + (p/R,)(R, /R, )cos 09)
1+ (2/5)(R,/R,)? ’

The distance traveled by the ball along this plane, which
isinclined at an angle & with respect to the horizontal plane
is

€))

e sinf,— (p/R.)(R,/R,)cos b, (10)

eo sin® + (p/R,)(R,/R,)cos 6

Equation (10) shows that the ratio of the distance cov-
ered on both planes is constant for a given ball and inclina-
tions. The preceding equation can be simplified for the case
in which both planes have the same inclination as

1 +e/e

— %1t _ (R./p)(R./R,)tan 6.  (11)
1 —e/eg e —e
I11I. EXPERIMENT

We have studied the rolling of steel, brass, and alumi-
num balls of different sizes along an aluminum track of
width 0.950 cm and a wood track of width 0.670 cm. Both
tracks were 1.000 m long. The tracks are joined by a small
curved piece in both cases. Measurements of time have
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been performed using a system similar to that described by
Chaplin and Miller.

IV. RESULTS AND DISCUSSION
A. Rolling along an inclined track

The measurement of the time spent by the ball to reach
different distances from an initial position allow the calcu-
lation of the acceleration a from the slope of the straight
line obtained by plotting the distances versus the squared
times. This linearity confirms that the mass center of the
ball has a uniformly accelerated rectilinear movement.

According to Eq. (1), a plot of a/cos € vs tan 6 must
produce a straight line of slope g/[1 + (2/5) (R, /R,)?],
and a y intercept of g(p/R.)(R,/R.)/
[1+ (2/5)(R,/R,)*]. InFig. 4 the results obtained with

S0

x/t
em/s)

40.

30

o 1 2
t sy

Fig. 5. Rolling along horizontal wood track; steel balls; diameters: A:
2.500 cm, B: 1.510 ¢m, C: 1.360 cm, D: 1.125 cm.
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Fig. 6. Distances traveled by different steel balls on opposed inclined
planes; aluminum tracks. Same inclination of both planes; tan 8 = 0.070.
Diameters: A: 1.270 cm, B: 1.510 cm, C: 2.000 cm.

steel balls of different diameters in wood track are plotted.
The values of the coefficient of rolling friction obtained are
show in Table II.

B. Rolling along a horizontal track

In this case different balls are released down a slightly
inclined track and the time intervals spent to reach differ-
ent distances x along a second horizontal track aligned
with the former are calculated. Theoretically the move-
ment will be rectilinear uniformly decelerated and plotting
x/t vs t must correspond to straight lines according to Eq.
(6).

The results for some steel balls and wood track are
shown in Fig. 5. Calculated values of p are show in Table IT.
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Fig. 7. Distances covered by a steel ball of diameter 2.000 cm with differ-
ent inclination for each of the aluminum tracks. A: tan 6, =0.104,
tan@=0.052; B: tanf,=tan8=0.052; C: tan6,=0.052,
tan 6 = 0.104. ’
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Fig. 8. Distances covered by steel (A), brass (B), and aluminum (C)
balls of radius 2.500 cm. Same inclination of both aluminum planes;
tan & = 0.070.

C. Rolling along a track between two inclined planes

Equation (11) predicts that when a ball is released from
a certain height using the device show in Fig. 1, the distance
e, and e traveled by the ball along the first and second
inclined plane, respectively, must keep a linear relation.
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Fig. 9. Calculation of the coefficient of rolling friction by the double in-
clined track method. Data for the different steel ball allow the calculation
of (1 +e/ey)/(1 —e/e,) from the slope of the obtained lines e vs e,
Aluminum tracks; diameters: A: 2.500 cm, B: 2.000 cm, C: 1.510 cm, D:
1.125 cm.
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Figure 6 shows the results obtained using steel balls of dif-
ferent radii and Fig. 7 shows the results of rolling a ball
with different track inclination. The inclination angles that
have been used were always smaller than 10° in all cases.

A plot of the data obtained for steel, brass, and alumi-
num balls of the same radii moving between aluminum
tracks with the same inclination is show in Fig. 8. The re-
sults show a different behavior of these materials attribut-
able to their different coefficient of rolling friction.

Equation (12) has been used to calculate the values of
the coefficient of rolling friction, using the data from e/e,
ratios obtained for each ball from the slope of the lines
obtained from graphic representation e vs e, for several
inclination angles. The results are show in Fig. 9. The esti-
mated values of the coefficient of rolling friction are com-
parable with those calculated in Secs. IV A and IV B. The
values show an increasing variation with the ball’s radius
(see Table II).

V. FINAL CONSIDERATIONS

Using the values of the rolling friction coefficient shown
in Table II and u = 0.13 for steel-aluminum slipping fric-
tion coefficient obtained from inclined track measure-
ments,”'° Egs. (3) and (4) suggest a small contribution of
torque friction T to the total torque in pure rolling motion
and in rolling with slipping motion along an inclined track.

According to Eq. (3), for rolling motion, this contribu-
tion decreases when the inclination angle 8 increases; only
for very small angles, torque friction 7 is found to have a

significant contribution to the total torque. In the case
6 = 0°, horizontal track, T has an important contribution
to total torque.

According to Eq. (8), the ratio of the work done by
rolling friction to the initial energy would increase when
angle @ decreases; large values for frictional dissipation en-
ergy can be attained for small angles.

er/Einitial = (P/Re ) (Rb/Re )Cotan 0.

Thus, the inclusion of rolling friction is particularly rel-
evant in rolling motion in a horizontal track and in an in-
clined track for small angles of inclination.
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Evidence is presented suggesting an ancient heliocentrist origin for geocentrist C. Ptolemy’s
planetary orbit elements and the equant. Pliny’s data for Venus are shown to be inconsistent with
geocentricity, and a heliocentric period-relation is found to be the basis of Ptolemy’s previously
unexplained and astonishingly accurate tables of the mean motion of Mars, the very planet whose
orbit produced the equant. The admirable correctness of his adopted Mars elements is patently
inconsistent with the ordmag 1° inaccuracy of Ptolemy’s geocentric model and of his alleged

empirical production.

I. THE EQUANT ADVANTAGE

Inarecent paper in this Journal, J. Evans has presented a
persuasive diagrammatic demonstration’ that inevitably
severe problems with Mars’ orbit drove the ancients to
adopt the ingenious device known as the “equant,” to re-
place the primitive “eccentric’ model. In this section, I will
add some simple and useful quantitative details to Evans’
argument.

Figure 1 illustrates the Ptolemaic equant model. The
planet P travels uniformly (about point 4) on a noneccen-

235 Am. J. Phys. 55 (3), March 1987

tric circular “epicycle” (of radius ) where epicycle center
A travels nonuniformly on a circular “deferent” of unit
radius. The Earth T'is not at the deferent’s center C (thus
from the geocentric perspective, the motion of 4 is eccen-
tric) but is offset from it a distance e, the *“‘eccentricity.”
The equant point @ (not deferent center C, as in the old
eccentric model) is the center of 4 ’s uniform angular mo-
tion, where Q is placed a distance e from C, on the opposite
side of C from T. (Thus, Cis halfway between points 7" and
Q)

Before Evans’ analysis, modern scholars often tacitly as-
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