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The physics of putting

A.R. Penner

Abstract: The motion of a rolling golf ball on a sloped golf green is modeled. The resulting
calculated path of a golf ball is then used, along with a model of the capture of the golf
ball by the hole, to determine the resulting launch conditions required for a successful putt.
Estimates of the probability of making certain putts are also presented.

PACS No.: 01.80+b

Résumé: Nous modélisons le mouvement d’une balle de golf sur un vert en pente. La
trajectoire calculée et un modèle décrivant la capture par le trou sont alors utilisés pour
déterminer les conditions initiales qui font que le coup roulé est couronné de succès. Nous
présentons également les probabilités de succès de certains coups roulés.

[Traduit par la Rédaction]

1. Introduction

Whether it be first-time golfers at a pitch and putt or professional golfers playing a regulation 18-hole
course, putting is the most common stroke in the game of golf. In professional tournaments a crucial putt
is typically the most dramatic shot and the saying, “Drive for show, putt for dough”, has been validated
many a time. The goal of this paper is to look at some of the physics of putting and to determine the
launch conditions required for a successful putt.

The first aspect of putting that will be considered will be the motion of a rolling golf ball on a golf
green. Models of the motion of a golf ball on a sloped green have been presented by Lorensen and
Yamrom [1] and Alessandrini [2]. These models, however, treat the motion of the golf ball as that of an
object sliding along a sloped surface and do not take into account the rolling motion. The model that
will be presented in this paper will assume that the ball is rolling as it moves over the green. The second
aspect of putting that will be considered is the capture of a rolling golf ball by the hole. Holmes [3]
presented a detailed model of the capture of a golf ball by a hole on a flat green. This model will be
discussed briefly along with a correction that will be required to account for sloped greens. The models
of the motion and path of a golf ball on the green and the capture of the golf ball by the hole will then
be used to determine the launch conditions required for successful putts on various sloped greens.

2. The path of a putt

The initial motion of a putted golf ball on a golf green is, in general, more involved than first
appearances would indicate. The basic act of putting involves striking a golf ball with a flat faced golf
club, the putter.As most putters have a slight loft, a typical putted golf ball will become slightly airborne
after being struck and will initially bounce several times on the green. This is especially evident when
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putting on dewy greens where the bounce marks become visible. The frictional force between the green
and the golf ball will normally put the ball in a state of pure rolling after the bounce phase. If the putter
has no loft, the golf ball will initially be in a combined state of sliding and rolling before it finally ends
up in a state of pure rolling. Both Cochran and Stobbs [4] and Daish [5] indicate that a putted golf
ball will be in a state of pure rolling after traveling approximately 20% of the total length of the putt.
However, this would, in general, depend on both the loft of the putter and on the nature of the impact as
a golf ball can initially be given top spin or bottom spin depending on the relative position of the putter
at impact. For the purposes of this paper the ball will be taken to be in a state of pure rolling immediately
after it leaves the face of the putter. This will greatly simplify the analysis and this approximation would
be expected to have only a secondary effect on the actual path of the putt.

2.1. Putting on a level green
The dynamics of a ball rolling along level and inclined surfaces has been modeled by Domenech

et al. [6] and Witters and Duymelinck [7]. In general, both the ball and the surface on which it rolls
become slightly deformed and this is the source of the retarding force that acts on the ball. The force
due to the deformed surface will be distributed over the contact area and, in general, will be equivalent
to a single force and a couple acting on the ball. This force and couple are, in turn, equivalent to a single
force acting at the point on the ball’s surface where the resulting moment is equal to that of the couple.
This equivalent force can be resolved into a component,n, normal to the surface and a component,f ,
tangential to the surface. The position of the equivalent single contact point on the golf ball is given
by ρ, the perpendicular distance between the normal component of the contact force and the centre of
mass of the golf ball. The force diagram in the case of a golf ball of massm and radiusR, rolling on
a level green, is shown in Fig. 1. The resulting equations of motion for a golf ball, with a moment of
inertiaI , rolling on a level green will then be

may = −f (1)

Iαx = nρ − f Rt (2)

whereRt, the perpendicular distance between the tangential component of the contact force,f , and the
centre of mass of the golf ball, is given by

Rt = (R2 − ρ2)1/2 (3)

Typically ρ << R and the approximation thatRt = R will be used in the analysis. The constraint of
rolling will be given by

ay = −αxR (4)

Solving (1), (2), and (4) for the acceleration of the golf ball results in,

ay = −5

7
ρgg (5)

whereρg = (ρ/R). The above model ignores the fact that the surface of a golf ball is dimpled, however,
as the dimpled surface would be expected to have only a minor effect on the path it seems a reasonable
approximation to treat its surface as smooth.

Experimental measurements of a golf ball rolling on a green by Hubbard and Alaways [8] have
indicated that there is a dependence of the deceleration of a golf ball on its speed, with the retarding
force increasing at lower speeds. However, the dependence was found to be small, i.e., a 10% variation
over a 14 ft (4.3 m) putt (1 ft = 0.3048 m), and for the purposes of this paper the golf ball’s deceleration,
and therefore the value ofρg, will be taken to be constant. In the case of a relatively hard golf ball rolling
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Fig. 1. The forces acting on a golf ball rolling on a
level green.

Fig. 2. The overhead view for a golf ball launched at
a speedv and a launch angleβ.

on a compliant green, the value ofρg would be expected to be primarily determined by the firmness of
the green and the condition of the grass surface. In golf, one refers to the speed of the green, with a fast
green being one where the ball rolls a relatively long distance before coming to rest. The speed of a green
will be directly related to the deceleration of the golf ball and will, therefore, be a measure of the value
of ρg. The speed of a green is typically measured by a device called a stimpmeter, which is basically an
inclined plane with a V-groove running down its centre. Holmes [9] has shown that the initial speed of
a golf ball when it leaves the end of a stimpmeter is 1.83 m/s. For what would be considered a very fast
green the ball rolls, after leaving the end of the stimpmeter, a distance of approximately 12 ft (3.66 m).
For what would be considered a very slow green the ball rolls a distance of only approximately 4 ft
(1.22 m). Using the speed of the golf ball as it leaves the stimpmeter (as determined by Holmes), the
above extreme roll distances, and the acceleration of the golf ball as given by (5), the range of values
for ρg with golf greens can be found. The result is that for golf balls rolling on golf greens

0.065< ρg < 0.196 (6)

with an average value of 0.131.

2.2. Putts on sloped greens
For the more general case of a rolling golf ball on a sloped green, the value ofρg will be taken to

be the same as is found with level greens, and the equivalent contact point on the golf ball will be taken
to be along the direction of travel. These approximations will greatly simplify the analysis and would
be expected to have only a secondary effect on the determined paths.

Figure 2 shows the overhead view for a golf ball launched at a speed ofv and a launch angle ofβ
towards a hole that lies on they-axis. The normal component,n, of the contact force acting on the golf
ball will be given by

n = nk (7)

while the tangential component,f , of the contact force is given by

f = −f (sinφi + cosφj) (8)

where the angleφ is as shown in the figure. Taking the surface of the green to be sloped at angles, with
respect to the horizontal, ofθ along thex-axis andϕ along they-axis, the gravitational force will be
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given by

W = −mg(sinθi + cosθ sinϕj + cosθ cosϕk) (9)

Using Newton’s second law

ma = W + f + n (10)

then results in the following three equations:

max = −mg sinθ − f sinφ (11a)

may = −mg cosθ sinϕ − f cosφ (11b)

and

0 = n − mg cosθ cosϕ (11c)

The position of the contact point with respect to the centre of mass of the golf ball, in the case where
ρ << R, will be

r = ρ sinβi + ρ cosβj − Rk (12)

It then follows from

Iα = r × (n + f ) (13)

that

Iαx = nρ cosβ − f R cosφ (14a)

and

Iαy = −nρ sinβ + f R sinφ (14b)

The constraint of rolling for this general two-dimensional case will be

a = α × R (15)

from which

ax = αyR (16a)

and

ay = −αxR (16b)

Solving (11), (14), and (16) for the direction and magnitude of the tangential component of the contact
force, results in

tanφ = ρg cosθ cosϕ sinβ − Ib sinθ

ρg cosθ cosϕ cosβ − Ib cosθ sinϕ
(17a)
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Fig. 3. The paths of golf balls launched at angles of−15◦, −7.5◦, 0◦, 7.5◦, and 15◦ along (a) a level green, (b) a
green with an uphill slope of 5◦, and (c) a green with a downhill slope of 5◦.

and

f = ρg cosθ cosϕ cosβ − Ib cosθ sinϕ

(1 + Ib) cosφ
mg (17b)

whereIb = I/mR2. The golf ball will be modeled as a uniform solid sphere withIb equal to 2/5. The
above expressions forf andφ along with (11a) and (11b) will allow thex- andy-components of the
acceleration of the golf ball to be determined for greens of various slopes. Given these accelerations,
along with the initial launch conditions, the paths of the putted golf balls can be determined. For the paths
shown in this paper the step size used in the calculations was 0.001 s, which resulted in a calculation
uncertainty of less than 0.1% in the determined paths. Two specific cases of the paths of putts on sloped
greens will be considered in this paper. These are putts to holes that are either directly uphill or downhill
from the initial position of the golf ball and putts that are to holes that are directly across the slope of a
green, i.e., slopes that run along thex-axis of Fig. 2.

2.3. Uphill and downhill putts
In the case of straight uphill and downhill putts,θ is equal to zero in (11) and (17). As an example

of calculated paths, Fig. 3 shows the determined paths of golf putts for a range of launch angles in the
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Fig. 4. The paths of golf balls launched at angles of 5◦, 30◦, 45◦, and 60◦, on a green with a 5◦ slope along the
x-axis and withρg = 0.

case of putts towards a hole 10 ft away along a flat green, a green with an uphill slope of 5◦, and a
green with a downhill slope of 5◦. A value of 0.131 was used forρg in all three cases and the launch
velocities of 2.37, 3.05, and 1.36 m/s of the golf balls, for each of the respective slopes, were selected
so that a putt directly along they-axis would travel exactly 10 ft. As can be seen, in the case of uphill
putts, putts that are initially off line will diverge from the target, while in the case of downhill putts,
they will converge towards the target. In general, it was also found that the amount of divergence for
uphill putts and the amount of convergence for downhill putts increases for faster greens, i.e., smaller
values ofρg. However, in the case of downhill putts, if the value ofρg is too small, the ball will have
a positive acceleration along they-axis and will, therefore, not come to rest if the hole is missed. The
critical value forρg can be determined by substitutingφ = 0◦ andβ = 0◦, along withθ = 0◦ into
(17b) and then substituting forf in (11b). The result is thatay will be positive for a downhill putt if

ρg < tan | ϕ | (18)

and, therefore, for a downhill slope of 5◦ the critical value forρg will be 0.087. For values ofρg less
than this critical value the golf ball will accelerate downhill and will not come to rest if it misses the
hole.

2.4. Putts across the slope
In the case of putting across the slope of a green,ϕ will be equal to zero in (11) and (17). The

resulting paths for putts with various launch conditions were determined for various values ofρg for
the case of a slope of 5◦ along thex-axis. Figure 4 shows the case where there is no retarding force,
ρg = 0. The launch speed of the golf ball was set at 1.74 m/s and the paths that the golf balls would
follow for various launch angles towards a hole 10 ft away are shown. From (11), in the case of no
retarding force,f = 0, a golf ball will have a constant acceleration of−g sinθ along thex-axis and
will have no acceleration along they-axis. As is seen in Fig. 4, the golf ball will, therefore, follow a
parabolic path and, as is the case with projectiles, for any two launch angles that are complementary,
golf balls that have the same launch speed will travel the same range, defined as the distance traveled
outwards up to the point that the ball returns back tox = 0. Figure 5 shows similar examples of paths
of putts across a 5◦ sloped green for values ofρg of 0.065 and 0.131, corresponding to a fast and an
average green. The launch speeds in the two cases are 2.00 and 2.50 m/s, respectively. As is seen in
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Fig. 5. (a) The paths of golf balls launched at angles of 5◦, 22◦, 39◦, and 56◦ on a green with a 5◦ slope along the
x-axis and withρg = 0.065.(b) The paths of golf balls launched at angles of 8◦, 16◦, 24◦, and 32◦ on a green with
a 5◦ slope along thex-axis and withρg = 0.131.

Figs. 5a and 5b, the same general result, as was found in the case of no retarding force, holds except
that the same range is obtained for launch angles summing to approximately 60◦ and 40◦, respectively,
for the values ofρg considered. Also, as is seen in Fig. 5b, for larger values ofρg, which translates into
greater retarding forces, there may be only one launch angle, for a given launch speed, for which the
golf ball will actually reach the hole.

The model of the path of rolling golf balls on sloped greens that has been presented has provided
reasonable results. However, it must be made clear that the model can only approximate the actual
behavior of a real putt. This is not only due to the approximations made in the treatment of the contact
force and the initial motion of the golf ball but also because the grass surface will have small but
numerous imperfections that will result in deviations in the golf ball’s path.

3. The capture of a putt

The problem of the capture of a golf ball by a hole, of radiusRH, on a flat green is considered in
the paper by Holmes [3]. The simplest condition for the capture of a golf ball that is traveling directly
towards the centre of the hole is for the golf ball, after it leaves the front rim, to free fall a distance
greater than its radius,R, before it strikes the far rim. The critical case is shown in Fig. 6. The time of
flight of the free-falling golf ball will be given by

t = (2RH − R)

vf
(19)

wherevf is the speed of the golf ball when it reaches the hole. The condition for capture by free fall
will, therefore, be

gt2

2
> R (20)

or in terms ofvf

vf < (2RH − R)

(
g

2R

)1/2

(21a)
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Fig. 6. The free-fall capture of a golf ball of radiusR by a hole of radiusRH on a level green.

Fig. 7. The impact-speed – impact-parameter capture space for a golf ball impacting on a golf hole as determined
by Holmes (continuous line) and as approximated by (23) (broken line).

For a standard USGA-approved golf ball of radius 2.135 cm and a hole of radius 5.40 cm this becomes

vf < 1.31 m/s (21b)

In the more general case of off-centre impacts the condition for capture by free fall is shown by
Holmes to be given by

vf <
(
(R2

H − δ2)1/2 + (
(RH − R)2 − δ2)1/2)( g

2R

)1/2

(22)

whereδ, the impact parameter, must be less thanRH −R, if the golf ball is to leave the near edge before
it strikes the far edge. If the golf ball’s speed and impact parameter does not meet the above condition
it may still be captured as the ball may roll on the lip of the hole before falling in or it may strike the
far side of the hole after falling a distance less thanR, but bounce and then fall in the hole. Holmes
considered all the possible ways that a golf ball may be captured by a hole and by computer modeling
determined the impact-speed – impact-parameter capture space for a golf ball impacting on a golf hole.
The result is shown in Fig. 7. As is seen, in the case of a direct impact,δ = 0, the critical capture
speed is increased from 1.31 m/s for capture by free fall to 1.63 m/s when all methods of capture are
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Fig. 8. The free-fall capture of a golf ball of radiusR by a hole of radiusRH on an uphill sloped green; (a) side
view and (b) overhead view.

considered. Holmes’ model matched well with experimental measurements, which he also carried out.
The following function, which is also shown in Fig. 7, provides a reasonable fit to the boundary of the
capture region in Holmes’ model and will be used in the analysis:

vc(δ) = 1.63 m/s− (1.63 m/s)

(
δ

RH

)2

(23)

To take into account putting on a sloped green, a correction to the capture region determined by Holmes
is required. The case of an uphill putt on a green of slopeϕ in the case of direct impact,δ = 0, and an
approach direction ofβf is shown in Fig. 8. The time of flight in this case will be given by

t = (2RH − R)

vf , horiz
(24)

wherevf , horiz , the horizontal velocity component of the golf ball, is given by

vf , horiz = vf (cos2 βf cos2 ϕ + sin2 βf )
1/2 (25)

The condition for capture by free fall will then be given by

gt2

2
− vf , vertt > R − 1z (26)

wherevf , vert, the vertical velocity component of the golf ball, is given by

vf , vert = vf cosβf sinϕ (27a)

and1z, the vertical distance between the near and far sides of the hole, is given by

1z = 2RH cosβf sinϕ (27b)
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For relatively small slopes,vf , horiz = vf , and the condition for capture by free fall, (26), will then
become

vf < (1 − cosβf sinϕ)−1/2(2RH − R)

(
g

2R

)1/2

(28)

This expression also holds in the case of downhill putts withϕ being negative. In the case of putts across
the slope of a green the condition for capture by free fall is found by similar analysis to be

vf < (1 + sinβf sinθ)−1/2(2RH − R)

(
g

2R

)1/2

(29)

Although (28) and (29) only apply to capture by free fall in the case of direct impact,δ = 0, as an
approximation of the effect slope has on the capture of a golf ball, these corrections for a sloped green
will be applied in general to Holmes’ model. This approximation would only be reasonable in the case
of the relatively small slopes that are considered in this paper. Therefore, a golf ball will be taken to be
captured by the hole, in the case of uphill or downhill putts on a green of slopeϕ, if its impact speed
vf , impact parameterδ, and approach directionβf satisfy

vf < (1 − cosβf sinϕ)−1/2vc(δ) (30)

In the case of uphill putts on a green with a slope of 5◦ the result is that the critical capture speed for
direct impacts increases from 1.63 to 1.71 m/s and in the case of downhill putts on the 5◦ sloped green
it decreases to 1.56 m/s. Similarly, a golf ball will be taken to be captured by the hole for putts across
the slope of a green, if its impact speedvf , impact parameterδ, and approach directionβf satisfy

vf < (1 + sinβf sinθ)−1/2vc(δ) (31)

4. Required launch conditions

Given the above model for the motion and path of a golf ball, along with the slope-adjusted capture
model of Holmes, the required launch conditions of a golf ball for a successful putt can be determined.
The cases of putting on a level surface, putting on uphill and downhill slopes, and putting across the
slope of a green will be considered.

4.1. Putting on a level surface

In the case of putting on a level surface, with a constant acceleration as given by (5), the speed of
the golf ball,vf , when it reaches the hole, located a distancey away, will be given by

vf =
(

v2
o −

(
10

7

)
ρggy

)1/2

(32)

wherevo is the launch speed of the golf ball. Therefore, in the case of direct impacts, where the range
of impact speeds that result in the capture of the golf ball on a level green is given by

0 < vf < 1.63 m/s (33)

the required launch speeds for a successful putt will be given by

((
10

7

)
ρggy

)1/2

< vo <

(
(1.63 m/s)2 +

(
10

7

)
ρggy

)1/2

(34)
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Fig. 9. The range of possible launch speeds for a suc-
cessful putt as a function of hole distance in the case
of a level green withρg = 0.131.

Fig. 10. The launch conditions that resulted in suc-
cessful putts for hole distances of 4 ft (left), 10 ft (mid-
dle), and 20 ft (right) for a level green withρg = 0.131.

Figure 9 shows the range of possible launch speeds for a successful putt as a function of the hole distance
in the case of a green withρg = 0.131. As is shown, the range of allowed launch speed decreases with
hole distance. The range of possible launch angles that can lead to a successful putt to a hole a distance
y away on a level green will in turn be given by

− tan−1
(

RH

y

)
< θ < tan−1

(
RH

y

)
(35)

To determine the complete set of launch speeds and launch angles that would lead to a successful putt,
the paths that golf balls would travel, given various launch conditions, were determined. For those putts
whose paths crossed the hole, the capture condition as given by (30), withϕ = 0, was checked. The
resulting launch conditions that resulted in successful putts to hole distances of 4, 10, and 20 ft for a
level green withρg = 0.131 are shown in Fig. 10. In the case where the probability of a player making
a putt is small, the scatter in the launch speed and launch angles in the putts of the given player will be
much larger than the range in the launch conditions required to make the putt. The probability of the
player making a putt will in these cases then be approximately proportional to the areas of the required
launch conditions as given in the launch-speed – launch-angle space. Pelz [10] found that professional
golfers make approximately 50% of putts from a distance of 6 ft. Using this value to scale the areas of
required launch conditions, as given in launch-speed – launch-angle space, allows for the probability
of making putts for other distances and other conditions to be determined. The result for a level green
is shown in Fig. 11 with the probability of making a putt shown for hole distances ranging from 6 to
30 ft. Also shown is the range of success of professional golfers, as given by Pelz, in making putts at
these same distances. As is seen, the general dependence of the probability of making a putt on hole
distance, as predicted by the putting model, agrees well with the results of professional golfers.

4.2. Putting on uphill and downhill slopes
In the case of putting directly uphill or downhill,θ = 0◦, the acceleration of the golf ball can be

determined by settingφ andβ equal to 0◦ in (17b) and then substituting into (11b). The result is

ay = −5

7
g(ρg cosϕ + sinϕ) (36)
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Fig. 11. The calculated probabilities of making a putt
(dotted line) compared with the range of results of
professional golfers as given by Pelz (continuous line).

Fig. 12. The range of possible launch speeds for a
successful putt as a function of hole distance in the
case of a green withρg = 0.131 and with an uphill
slope of 5◦ (higher range) and a downhill slope of 5◦

(lower range).

The speed of the golf ball,vf , when it reaches the hole, located a distancey away, will then be given by

vf = (v2
o −

(
10

7

)
(ρg cosϕ + sinϕ)gy)1/2 (37)

Therefore, in the case of direct impacts, where the range of impact speeds that result in the capture of
the golf ball on an green, with an uphill slope ofϕ = 5◦, is given by

0 < vf < 1.71 m/s (38)

the required launch speeds will be given by

((
10

7

)
(ρg cosϕ + sinϕ)gy

)1/2

< vo <

(
(1.71 m/s)2 −

(
10

7

)
(ρg cosϕ + sinϕ)gy

)1/2

(39)

Similarly in the case of downhill slopes

((
10

7

)
(ρg cosϕ + sinϕ)gy

)1/2

< vo <

(
(1.56 m/s)2 −

(
10

7

)
(ρg cosϕ + sinϕ)gy

)1/2

(40)

whereϕ = −5◦. Figure 12 shows the range of possible launch speeds for a successful putt as a function
of hole distance in the case of greens withρg = 0.131 and with uphill and downhill slopes of 5◦. As
is seen, the allowed range of launch speeds, for a given hole distance, is greater for downhill putts
than it is for uphill putts. This is also true for the allowed range of launch angles, which is due to the
convergence of misdirected putts towards the hole for downhill putts, as is shown in Fig. 3c, and the
divergence of putts in the case of uphill putts, as is shown in Fig. 3b. The sets of launch conditions that
resulted in successful putts in the case of a 10 ft putt, on a downhill slope of 5◦, on a level green, and
on a uphill slope of 5◦, with a value forρg of 0.131, are shown in Fig. 13. As previously mentioned the
probability of a player making a putt would be expected to be approximately proportional to the areas
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Fig. 13. The launch conditions that resulted in successful putts in the case of a 10 ft putt on a green with a downhill
slope of 5◦ (left), on a level green (middle), and on a green with an uphill slope of 5◦ (right).

of the required launch conditions as given in launch-speed – launch-angle space. Therefore, as is seen
in Fig. 13, the probability of making a downhill putt is significantly greater than the equivalent putt on a
level green or an uphill putt. In the case shown, it is found that for a 10 ft putt the probability of making
the downhill putt is approximately 2.9 times greater than the probability of making the uphill putt. This
result would come as a surprise to most golfers and it needs to be pointed out that this would only be
true for relatively small slopes whereay < 0. From (18), for an average green withρg = 0.131 the
slope must be less than 7.5◦ while for a fast green withρg = 0.065 the slope must be less than 3.7◦.
Also, there is a trade off, for if the putt is missed the distance between the final stopping point of the
golf ball and the hole is much greater for a downhill putt than for an uphill putt. For example, for the
10 ft putts of Fig. 13, if the golf ball is launched within the range of acceptable launch speeds for each
of the given slopes but just misses the hole, it is found that in the case of the uphill putt the ball will end
stopping as far as 2.9 ft from the hole while the downhill putts, if they just miss, will end up as far as
13.1 ft from the hole. The resulting increased probability of three putting along with the more delicate
touch required for a downhill putt would lead most golfers still preferring an uphill putt.

4.3. Putts across the slope

Figure 14a shows the launch conditions required for 4 and 10 ft putts to a hole on they-axis on a
fast green with a value forρg of 0.065 and with a slope of 5◦ in thex-direction. As can be seen, and
also shown in Fig. 5a, there are, in general, two acceptable ranges of launch angles for each acceptable
launch speed. Figure 14b shows the same putts in the case of an average green with a value of 0.131
for ρg. As is shown in this figure, and in Fig. 5b, for putts at the higher launch angles the golf ball will
typically come to rest before it reaches the hole. As is indicated in both these figures, the greatest range
in acceptable launch angles corresponds to approximately the minimum value of acceptable launch
speeds. In the case of putts on average speed greens, such as is given in Fig 14b, this also corresponds
to putts near the maximum allowed launch angle. This agrees with the advice given by Pelz [10], that
based on his tests, putting towards the high side of the range of allowable launch angles provides the
best statistical probability for making putts.
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Fig. 14. The launch conditions that resulted in successful putts in the case of 4 ft (left) and 10 ft (right) putts on a
green with a slope of 5◦ along thex-axis and with (a) ρg = 0.065, and (b) ρg = 0.131.

5. Conclusion

The dynamics and the resulting paths of the golf balls that have been presented provide a reasonable
model for the motion of a golf ball on sloped greens. To further improve the model would require an
investigation on the position of the contact area for a rolling ball on a sloped surface and the resulting
contact forces and moments. The resulting required launch conditions that were determined from this
model, along with Holmes’ model, allowed for the determination of the dependence of the probability
of making putts on the putt distance. The result agreed well with the actual performance of professional
golfers. It was also found that the probability of making a downhill putt is much greater than the
equivalent uphill putt. Although, for most golfers, the consequences of a missed putt would still lead
to a preference for an uphill putt. Finally, it was found that in the case of putting across the slope of a
green, the allowed variance in the launch angle is greatest when the launch speed is near its minimum
allowed value.

The model presented in this paper could be applied, in general, to the topology of any green and it
would be interesting to consider the variety of possibilities. Whether the results presented here would
help a golfer improve their putting is debatable and, unfortunately, this author has not noticed any
improvement in his game.
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