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The Proof Is in the Putting
Scott K. Perry, Physics Department, American River College, Sacramento, CA 95841;

skparc@attbi.com

As the saying goes, “You drive for show
and putt for dough.”  You would think
that physicists, with their superior

knowledge of vectors, would make excellent 
putters.  However, this often proves not to be the
case.

In an attempt to better understand how to
“read the break” on a putt, my students and I con-
ducted a series of experiments with a spring-
loaded putting machine that applies an impulse to
the equator of a golf ball in roughly the same
manner as a conventional putter.  In this note, 
experimental data are compared with a simple
theory of putting that excludes such things as: ir-
regularities in the putting surface (e.g., spike
marks), complex contours, dew on the grass, wind
resistance, and possible ball hopping (i.e., mo-
mentarily losing contact with the green).  In addi-
tion to these factors, this analysis ignores what
golfers call the “grain” of the grass, or what we, in
the plain language of physics, might call “textural
anisotropy.”  In other words, this is a putting
green that exists only in the mind of a physicist. 

To understand how the ball will roll over the
green, once struck, it is necessary to know both
the slope and the frictional characteristics of the
green.  In order to learn how to properly model
the frictional force between the ball and the put-
ting green, we took measurements on flat and lev-
el surfaces for both a putting green and a living-
room carpet.  A battery-powered photogate was
positioned along the track of the ball at various
distances.  It was then possible to compute the ve-
locity of the ball at various positions along its
path.  The results of these measurements are
shown in Figs. 1 and 2.

If a golf ball is struck by a putter so as to pro-
duce no initial spin,1 then it will skid for a dis-

tance xt until the frictional torque increases its an-
gular velocity � and it finally achieves the pure
rolling-without-skidding condition:2

� = �
V
R
cm�. (1)  

This transition from skidding to rolling is more
easily observed at a bowling alley.  Sometimes a
bowling ball is released with no initial spin and
sometimes it’s even released with backspin.

To determine xt, the distance over which the
ball skids before making the transition to pure
rolling, some assumptions must be made.  We
start by assuming that the golf ball of mass m and
radius R can be treated as a uniform solid sphere.3

For simplicity, we further assume that the coeffi-
cient of rolling friction �r is much smaller than
the coefficient of kinetic friction �k and that the
ball is launched with no initial angular velocity.
Vo is the initial velocity, and Vf is the velocity of
the ball when it has first stopped skidding and is
just beginning to undergo pure rolling.  Then, ap-
plying the impulse equations for both linear and

Fig. 1. Velocity data for a putted ball on a closely cropped carpet.
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angular motion (see Fig. 3), the following is 
obtained:

m(Vo – Vf ) = �k mg�t (2)

and

�
2
5

� mR2 ��
V
R

f�� = �k mgR�t. (3)  

Solving these equations for �t and then substitut-
ing into the following kinematics equation, 

xt = Vo�t – �
1
2

� �k g�t 2, (4)

leading to     xt = �
4
1
9
2
�

V

k

o
2

g
� . (5)

In the previous derivation, it was assumed that
the normal force acting on the golf ball produced
no torque.  This is not quite the case, and so the
calculation actually underestimates xt by about
10%.  Actually, due to the asymmetry in the way
the moving ball is supported by the blades of
grass, the normal force acts along a line of action
that is just slightly ahead of the ball’s center of
mass as shown in Fig. 3.  This asymmetry is asso-
ciated with encountering and deforming new
blades of grass as the ball moves along its path.  If
the normal force did not act in this manner, you
would have a rather paradoxical situation in
which the force of rolling friction would reduce
the ball’s linear velocity while simultaneously pro-
ducing a torque that would increase its angular
velocity.  The normal force produces a torque that
is opposite to the frictional torque.  This leads to a
net torque that does indeed reduce the angular ve-
locity of the ball as its linear velocity decreases.
The numerical simulation that is discussed at the
end of this paper properly accounts for this effect.
As the ball comes to rest, it settles into the grass,
and the supporting forces of the individual blades
produce a symmetric deformation patch under
the ball.  In this case, the normal force acts along a
line of action that passes up through the ball’s
center of mass.  When the ball is at rest, the nor-
mal force no longer produces a torque.

From an energy point of view, there is mechan-
ical energy lost due to both the kinetic friction of
adjacent blades rubbing against each other as the
ball rolls over them and to mechanical hysteresis
associated with the deformation of individual
blades.  Before pure rolling begins, there would be
additional energy loss associated with the kinetic
friction between the ball and the grass as the ball
skids over the surface.

Experimentally, the easiest way to determine
the coefficient of rolling friction for a given put-
ting green is to strike the golf ball with the putter
so that the ball will roll 20 ft or so over a flat and
level portion of the green.  Direct the ball toward
a marker that has been placed on the green out
about 5 ft.  This will assure that the ball has com-

Fig. 2. Velocity data for a putted ball on a typical grass putting
green.

Fig. 3. The primary forces on a golf ball as it rolls over a putting
green.
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menced pure rolling by the time it gets to this
marker.  Measure the distance D from the marker
to where the ball comes to rest and the elapsed
time T from the marker to the moment of rest.
Then:

�r = �
g
2
T
D

2�. (6)

Note: The Professional Golfers’ Association
(PGA) measures the frictional characteristics of a
putting green with a device called a Stimpmeter.4

This is little more than a standardized incline that
is used to start the ball rolling at a given speed
without skidding.

It would be possible to measure the kinetic co-
efficient of friction too by simply dragging a sled
supported by two golf balls that have been glued
to the sled so that they cannot roll.  A spring scale
can be used to measure the force Fc required to
move the sled over a level section of the green at a
constant velocity.  Then

�k = �
m
Fc

g
�. (7) 

In this paper, both the kinetic and rolling coeffi-
cients of friction are treated as fitting parameters
in Eqs. (8) and (9).  The best-fit values are indi-
cated in Figs. 1 and 2. 

V = �(V�o
2� –� 2���k g�x)� for x � xt (8)

V=�(V�o
2� –� 2���k g�xt� –� 2���rg�(x�–� x�t)� for x � xt (9)

The velocity-versus-position data, in Figs. 1
and 2, show rather clear transitions from skidding
to pure rolling.

Getting the ball to the hole is only part of the
problem for a golfer.  See Holmes’ article3 in
which he determines the likelihood of the ball be-
ing “captured” by the hole once it gets there.  If
the ball reaches the hole at a speed of greater than
about 1.6 m/s, it has virtually no chance of being
captured.  The Microsoft Excel putting simula-
tion mentioned at the end of this note incorpo-
rates this aspect of putting.

For an interesting article on another type of
friction associated with rolling, see Stepp’s

article.5 He shows that a wheel with an axle has
an effective coefficient of rolling friction, which is
just the kinetic coefficient of friction between the
axle and its hub reduced by the IMA (Ideal Me-
chanical Advantage) of the wheel-axle system.  In
such a system, the usual assumptions that are in-
voked are that there is no significant deformation
of either the wheel or the surface upon which it
rolls (i.e., an ox cart rolling over a perfectly
smooth, flat, and hard dirt road).  For this case,
the effective coefficient of “rolling friction” (note
this is not pure rolling as in the case of the golf
ball rolling over a deformable surface) is given by:

� = �
R
r
� �k , (10)

where r is the radius of the axle shaft and R is the
outer radius of the wheel.

It is interesting to note that the time that the
putter head is in contact with the ball during im-
pact is, to a first approximation, given by the half-
period of a mass-spring system:

Tc = � ��
m
k
��, (11)

where m is the mass of the golf ball (~46 g) and k
is the average “spring constant” of the golf ball
(~500 N/mm for deformations up to about 
5 mm).6 Using these numbers gives a contact
time of just under a millisecond.  A few years back
a well-known manufacturer of golf equipment
stated in its television ads that the golf ball is in
contact with the club face for less than a tenth of a
second, including putts, during a typical round of
golf.  This would seem to be true.  

By the way, the purple carpet at the local
miniature golf course registered the equivalent of
a 14 on the PGA’s Stimpmeter!  That corresponds

� (deg)      	 (deg)      Vo (m/s)       � (deg)  Note

0 -2 4.1 6.5 Ball escapes

0 -2 3.7 10 Ball captured

+3 -2 3.2 10 Ball escapes

+3 -2 2.5 20 Ball captured

-3 -2 4.7 6 Uphill putt

Table I.  Sample input data for the Excel putting simulation. 
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to a coefficient of rolling friction of 0.04.  Golfers
would call that a “very fast” green.

An Excel putting simulation, written by the
author, incorporates the results of this paper.  The
simulation allows the user to change the slope of
the putting surface.  Uphill and downhill putts
with or without sidehill slopes can be simulated.
The interested reader may download this putting
simulation at http://ic.arc.losrios.edu/~perrys/.

In the Excel putting simulation, � is the
downslope of the green (a negative value indicates
an uphill putt), 	 is a measure of the sideslope of
the putting surface, and � is the aiming angle (� =
0 corresponds to launching the ball directly at the
hole).  Some good examples of input data for the
simulation are shown in Table I.

The simulation demonstrates what most
golfers know from experience.  For a putt of a giv-
en length on a given slope, uphill putts require
relatively high launch speeds and are aimed more
directly at the hole.  Downhill putts require a gen-
tler touch and are aimed less directly at the hole.


